408 research outputs found

    Technology and test

    Get PDF
    The chairman of the Technology Applications in Space Working Group summarizes the technology issues for each of the disciplines in Tethered Satellite Systems. The disciplines are Tether Materials and Configurations, Tether System Dynamic Simulation Capability, Tether System Instrumentation, TAS Program Related Science Instrumentation, Atmospheric/Aerothermodynamic tethered system research, and TAS Discipline Program Accomplishment. To enable these tether applications, design and development programs have been recommended and are presently underway relative to the demonstration of the hollow cathode concept which is an enabling electrodynamic tether mission technology

    Thermal-barrier-coated turbine blade study

    Get PDF
    The effects of coating TBC on a CF6-50 stage 2 high-pressure turbine blade were analyzed with respect to changes in the mean bulk temperature, cooling air requirements, and high-cycle fatigue. Localized spallation was found to have a possible deleterious effect on low-cycle fatigue life. New blade design concepts were developed to take optimum advantage of TBCs. Process and material development work and rig evaluations were undertaken which identified the most promising combination as ZrO2 containing 8 w/o Y2O3 applied by air plasma spray onto a Ni22Cr-10Al-1Y bond layer. The bond layer was applied by a low-pressure, high-velocity plasma spray process onto the base alloy. During the initial startup cycles the blades experienced localized leading edge spallation caused by foreign objects

    Subsonic tests of an all-flush-pressure-orifice air data system

    Get PDF
    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated

    Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley 20-inch Mach 6 air tunnel

    Get PDF
    Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbier are presented without analysis. The tests were completed in the Langley 20-Inch Mach 6 Tunnel. The 0.04-scale model was tested at angles of attack from 0 to 35 and angles of sideslip from 0 to -4. The 0.02-scale model was tested at angles of attack from -10 to 45 and angles of sideslip from 0 to -4. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel to models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation had provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley continuous flow hypersonic tunnel

    Get PDF
    Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests wre completed in the Langley Continuous Flow Hypersonic Tunnel (CFHT). The 0.04-scale model was tested at angles of attack from -5 deg to 45 deg and angles of sideslip from -3 deg to 3 deg. The 0.02-scale model was tested at angles of attack from -10 deg to 45 deg and angles of sideslip from -5 deg to 5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft

    Get PDF
    The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed

    Pressure distributions on a 0.04-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley unitary plan wind tunnel

    Get PDF
    Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    Shuttle flight pressure instrumentation: Experience and lessons for the future

    Get PDF
    Flight data obtained from the Space Transportation System orbiter entries are processed and analyzed to assess the accuracy and performance of the Development Flight Instrumentation (DFI) pressure measurement system. Selected pressure measurements are compared with available wind tunnel and computational data and are further used to perform air data analyses using the Shuttle Entry Air Data System (SEADS) computation technique. The results are compared to air data from other sources. These comparisons isolate and demonstrate the effects of the various limitations of the DFI pressure measurement system. The effects of these limitations on orbiter performance analyses are addressed, and instrumentation modifications are recommended to improve the accuracy of similar fight data systems in the future

    Integrated Flush Air Data Sensing System Modeling for Planetary Entry Guidance with Direct Force Control

    Get PDF
    Flush air data sensing (FADS) systems have been previously used at both Earth and Mars to provide onboard estimates of angle of attack, sideslip angle, and dynamic pressure. However, these FADS data were often not used in an in-the-loop sense to inform the onboard guidance and control systems. A method to integrate FADS-derived density and wind estimates with a numerical predictor-corrector guidance algorithm is presented. The method is demonstrated in a high-fidelity simulation of a human-scale Mars entry vehicle that utilizes a hypersonic inflatable aerodynamic decelerator (HIAD) with direct force control. Effects on guidance commands and state uncertainties both with and without FADS system modeling are presented and discussed

    Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    Get PDF
    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds
    • …
    corecore